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The transformation of a solitary wave over 
an uneven bottom 
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Based on a set of approximate equations for long waves over an uneven bottom, 
numerical results show that as a solitary wave climbs a slope the rate of amplitude 
increase depends on the initial amplitude as well as on the slope. Results are 
also obtained for a solitary wave progressing over a slope onto a shelf. On the 
shelf a disintegration of the initial wave into a train of solitary waves of de- 
creasing amplitude is found. Experimental evidence is also presented. 

1. Introduction 
In  recent studies of long waves in shallow water, the interplay between non- 

linearity and dispersiveness has received much attention (Whitham 1967). Added 
impetus to the current interest in this topic is due to the occurrence of analogous 
situations in widely different physical phenomena (see e.g. Gardner et al. 1967). 
Aside from classical theories for permanent waves (cnoidal and solitary) and an 
analytical theory announced by Gardner et al. (1967) pertaining to the inde- 
pendence of solitary waves, initial value problems have been studied numerically 
by Long (1964) and Peregrine (1966) in the context of water waves and by 
Zabusky and co-workers in plasma physics (see e.g. Zabusky & Kruskal 1965; 
Zabusky 1967). The governing equation in these works is the Korteweg-de Vries 
equation, or a simple extension thereof, thus corresponding to waters of constant 
depth. The effect of an uneven bottom on water waves of this class is of obvious 
engineering importance, and has been incorporated in the governing equations 
by Mei & LeM6haut6 (1966) and by Peregrine (1967). Only Peregrine (1967) 
obtained quantitative results using a finite difference scheme to compute the 
deformation of a solitary wave climbing a beach. The same problem is first 
treated here with a more appropriate initial condition than Peregrine's; addi- 
tional results are obtained which are in better corroboration with the experiments 
of Ippen & Kulin (1955), Kishi & Saeki (1966) and Camfield & Street (1969). 

The present paper also treats the related problem of a solitary wave propa- 
gating from a channel of constant depth, past a mild slope, onto a shelf of constant 
but smaller depth. When progressing over the shelf the wave is seen to disinte- 
grate into a train of solitary waves of decreasing amplitudes, which is in 
qualitative agreement with experiments. 
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2. The governing equations 
Based on potential theory the appropriate equations have been derived by 

Mei & LeMBhaut6 (1966) and in a different but equivalent version also by 
Peregrine (1967). 

FIQURE 1. Definition of symbols. 

We adopt dimensionless variables, as defined below and in figure 1, 

(T* ,  x*, y*) = L(T, x, y), 

t” = (~ /&hO)) t ,  

P* = (PSho)P, 

where variables on the left-hand sides are dimensional and those on the right- 
hand sides dimensionless. ho and L are typical vertical and horizontal length 
scales respectively. 

For shallow water and slow variation of the bottom profile, i.e. 

h,h’,FUN,etc. = O(E) ,  where E = ho/L < 1 

and for waves of the cnoidal class, i.e. (Ursell 1953), 

7/€3 = O(l) ,  

the set of approximate equations obtained by Mei & LeMBhaut6 are 

where u = horizontal velocity at the bottom, 

A = (V)3 + 3hh’h” + pm”, 
B = 3h(h’)2+$hZh”. 
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For horizontal bottom or ifh',  h etc. = O ( E )  the right-hand sides can be ignored 
and the equations reduce to those derived by Lin & Clark (1959) and by Long 
(1964). The terms involving the highest derivatives are not unique but may be 
rewritten using the first-order relationships, as was first done by Long (1964)) 
to give fixed characteristics, which facilitate numerical computations. 

Correcting some minor algebraic mistakes made by Mei & LeM6haut6 ( 1  966) 
these equations are in characteristic form 

along the coinciding characteristics x = constant, and along the two distinct 
characteristics, 

- ax 3h 1 - (hy-hhhtl 
dt = +Co(x) = k J(T l-ghh" 

ehc2du  ech2da 
6 dp 12 d/3 

+ $) 5 +Ah%' - dv + (1 - Bhh") __ - + __ - 

dP 

h' 
h D = - r] - h' + (h')3 + Qh'h"' + 2hh'h" (2.10) where in (2.9) 

These equations are solved numerically, as described in the appendix, using 
the IBM 360 computer. 

3. The transformation on a slope 
Instead of a closed beach a t  the end of a horizontal channel, it is necessary in 

our formulation to adopt the bottom depicted in figure 2 with a small but finite h,, 
say hl = O e l h , .  Since no significant disturbance had reached the upper end of the 
slope, when the computation was stopped at a place limited by numerical 
stability (appendix), all results reported here are applicable to a closed beach. 

FIGURE 2. Geometry of the problem. 
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A t  t = 0, the crest of a solitary wave of amplitude 7, is supposed to pass x = 0, 
far from the slope, and initial values of 7, u, v and a are taken from the classical 
formulas appropriate for the constant depth It,. The distance between the point 
x = 0 and the bottom of the slope xB is sufficiently large as long as 

a(%, O)/% < 0.1. 

Peregrine (1967) in a similar study adopted a different initial condition such that 
a t  t = 0, a solitary wave starts with its crest immediately above the start of the 
slope corresponding to xB = 0. This initial condition seems rather artificial and 
causes some difference from our results. 

h/hO 

FIGURE 3. Amplitude variation with depth for beach slope = go. Calculated results for 
yo/ho: -, 0.1; ---, 0-15; ----, 0.2. + , Peregrine’s result for yo/ho = 0.1. Experi- 
ments for yo/ho = 0.25-0.68 by Ippen & Kulin between shaded lines. Experiments by 
Kishi & Saeki for yo/ho: @, 0.043; 9, 0.12; 0, 0.305. 

For the slope, a = 1: 20, the transformation of solitary waves of different 
initial amplitudes were studied. Figure 3 shows the variation of maximum 
amplitude, qrnax, with depth. The largest values of qmax/h are all within the 
confidence limits given in table 3 (appendix). 

In  addition to the usual steepening of the front, our results indicate in general 
that when a wave reaches the slope the amplitude has increased slightly, and as 
it climbs the slope the amplitude increases a t  a rate increasing with the value 
of qmax/h, thus giving a transformation depending upon the initial amplitude. 

The reflexion from the beach is accurately predicted by the analytical approxi- 
mation of Peregrine (1967), i.e. it  is of the form of a nearly constant elevation of 
the height +a(+vo/ho)4 h,. 

In  their experiments with the beach of slope 1/20, Ippen & Kulin (1955) found 
consistently that the amplitude decreases from its initial value measured some 
distance away from the slope, to a smaller value as the crest reaches the slope. 
Our calculations show the opposite trend. In  fact according to inviscid theory 
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a slight increase in amplitude should be expected by the following argument. 
Clearly as the first ‘half’ of the solitary wave advances onto the slope the front 
of the reflexion is created. Associated with this positive elevation are particle 
velocities in the direction of propagation, i.e. against the advancing solitary 
wave. Thus the main crest will act as if superposed on an opposing current, which 
calls for a slight increase in amplitude in order to maintain roughly the same trans- 
port of energy. The observed decrease can be attributed to frictional attenuation, 
when the latter is estimated according to the empirical findings of Ippen, Kulin 
& Raza (1955). Peregrine’s initial condition precludes any conclusion either way 
in this regard. 

Neither Ippen & Kulin nor Peregrine reported a systematic change in ampli- 
tude variation with the initial amplitude. However, experiments by Kishi & 
Saeki (1966) with a roughened bottom (slope 1 : 20) show the similar trends as our 
results. Because of the rough bottom the frictional effects are pronounced, and 
the amplitude does not increase appreciably over the first part of the slope. 
However, as the amplitude to depth ratio becomes large the amplitude increase 
is no longer cancelled by the frictional attenuation. Thus, even with the scatter 
shown in figure 3, these experiments show distinctively a dependence upon initial 
amplitude, in qualitative corroboration with our inviscid theory. 

No dependence of amplitude variation on bottom slope was reported by 
Peregrine (1967), However, Ippen & Kulin found the following empirical re- 
lationship (although with considerable scatter), 

rmaxlro = K(W,)-? (3.1) 

where K is a constant and n depends on the bottom slope as shown in table 1. 
Comparison with the present numerical results (qo/h0 = 0.1) given in the same 
table and figure 4 indicates the same trend. However, since the experiments 
correspond to values of To/h, = 0.25-0-68 the agreement can only be considered 
qualitative. 

Slope 0.065 0.05 0.023 
Ippen & Kulin (1955) 0.19 0.26 0.47 
Present computation 0.15 0.18 0.30 

TABLE 1. Comparison of n values in equation (3.1) 

Recent experiments by Camfield & Street (1 969) reported amplitude variation 
of a solitary wave climbing a smooth beach. In figure 4 their data for a small 
slope 0.02 is seen to agree well with our theory for the slope 0.023. Their results 
for a different slope (0.045), when plotted in terms of variables adopted here, 
show a scatter even larger than that of Ippen & Kulin (1955). For this reason, 
a comparison with computed results for this slope is omitted. 

60 Fluid Mech. 39 
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FIGURE 4. Amplitude variation with depth for initial amplitude to depth ratio, vo/h, = 0.1. 
Calculated results for slopes, u: --- ,0*065; -, 0.05; ---, 0.023. 0, experiments 
by Camfield & Street for u = 0.02. 

4. The scattering of a solitary wave by a shelf 
The depth on the shelf, h,, is now changed to 0.5 h, but otherwise the same 

geometry is kept as shown in figure 2. 
The profiles for an initial amplitude to depth ratio of 0-12 and a slope a = 1 : 20, 

are shown in figure 5. As could be expected the development of the wave up to 
the point where it enters the shelf is the same as found in 8 3, except for the last 
part of the slope. When the wave, distorted by climbing the slope, enters the 
shelf, it undergoes a rather unexpected sequence of transformations. Figures 5 (a) 
and ( b )  show the profile becoming more peaked as the maximum amplitude 
increases at a rate decreasing with distance travelled on the shelf. Then a hump 
of smaller height appears at  the rear and gradually trails behind the main wave. 
While the main wave outruns the second hump, its tendency of growth is 
eventually arrested. The latter then experiences a development similar to that 
of the main wave, giving birth to a third hump. This third hump, however, is 
followed by a train of oscillatory waves, having the same characteristics as the 
linear shallow water waves. A tendency for the two larger peaks to separate into 
two solitary waves can be noticed. This is supported by the comparison in figure 
5 (c) between the computed profiles and the profiles of theoretical solitary waves 
of equal amplitudes. A corresponding comparison of wave speeds is shown in 
table 2, with a discrepancy consistent with that noted in table 3 (appendix). 

The reflected wave is again precisely of the form predicted by Peregrine’s 
theory, with a length approximately twice that of the slope. 
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FIGURE 5. Transformation of a solitary wave (qo/ho = 0.12) propagating over a slope, 
a = -&, onto a shelf of smaller depth, h, = 0.5 ho. ---, indicates the growth of the main 
crest. In (o), 0, indicates theoretical profiles of solitary waves. 

50-2 
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First crest Second crest 

T m a x i h l  
Solitary wave theory 
Present computation 

0.4 0.18 
0.838 0.768 
0.891 0.778 

TABLE 2. Comparison of wavespeeds 

5. Experimental evidence of solitary wave disintegration 
Street, Burges & Whitford (1968) were the first to report the formation of 

undulations behind a solitary wave on the upper part of a shelf. For different 
depth ratios, h,/ho, their results indicate that the formation of the secondary 
peaks is more rapid the larger the amplitude to depth ratio on the shelf. In  the 
case corresponding to our computations, h,/ho = 0.5, their experiments are all 
performed with amplitudes too smalI to give the formation of secondary peaks 
within the length of their tank; therefore no comparison of this feature can be 
made. However, a quantitative comparison of the maximum amplitude, l;lmax, 
observed at a station 12h0 onto the shelf (x = 28h0 in figure 5 ( b ) ) ,  can be made by 
extrapolating their findings to correspond to ~ ~ / h ,  = 0.12. Their result rmBx/ 
no M 1-58 compares favourably with our computed value 1.52. 

Since the experiments by Street et al. (1968) do not furnish detailedinformation 
for the disintegration on the shelf, our own results from some simple tests are 
presented. With the existing lucite flume it was necessary to reduce the water 
depth to 3 in. (1.5 in. on the shelf) in order to make the flume effectively long. 
A solitary wave was created by releasing a plunger vertically, and when the 
main wave has passed an absorber, the trailing disturbances were cut off by 
dropping a plate vertically. Four resistance probes were installed along the 
channel, as shown in the sketch in figure 6. 

In  spite of the small depth, and the rather crude way of generating the solitary 
wave, cases where vo/ho > 0.1 show agreement with the theoretical proHes, at 
the first probe as shown in figure 6(a)  for ~ ~ / h ,  = 0.12. The neglect of viscous 
damping in the theory prohibits quantitative agreement at  the later stations. 
The appearance of the second crest, is nevertheless, evident. 

To estimate the influence of friction, we make use of the experimental results 
of Ippen et at. (1955), for the damping of solitary waves on water of constant 
depth. Their empirical formula for the amplitude attentuation was given as 
follows: 

x = distance travelled, qo = amplitude at x = 0, 

T ( ~ ,  = amplitude a t  x = x, K = damping coefficient. (5.2) 
To achieve an order estimate, we assume that the empirical damping coefficient 
so found can be used for the attenuation of the fist crest of our distorted wave. 
Thus we find the estimated amplitude which would have been recorded in the 
experiments had there been no friction (indicated by 0 in figure 6). Though not 
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t (see) 

0 + 0.5 0 + 0.5 
t (see) 

FIQURE 7. Observed development at stations c and d for different initial amplitude to 
depth ratios. ?,I&,: --, 0.11; ---, 0.14; ----, 0.17. 

accounting for the entire discrepancy, this estimate does show that viscous damp- 
ing is the main source of error. The later appearance of the second hump can be 
explained by the amplitude in the experiment being smaller than in the theory. 

According to Ippen et a$. (1955), the damping of a solitary wave decreases with 
increasing amplitude. In figure 7 we show the development, which took place 
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a t  probes c and d for waves of different initial amplitudes. Clearly the agreement 
with theory is better for larger initial amplitudes (or smaller viscous influence). 
In none of the experiments was the tank long enough to observe the final stages 
of disintegration from undulations to a train of solitary waves. 

6. Concluding remarks 
Based on the Korteweg-de Vries equation and spatially sinusoidal initial data, 

Zabusky & Kruskal(1965) found numerically that a steepening of each crest was 
followed by a disintegration into a series of solitary waves, (called ‘solitions’ 
by them), which interact with those from the neighbouring periods in a com- 
plicated manner. Their results have been applied by Zabusky & Galvin (1968) 
in an attempt to predict the secondary crests observed in a wave channel of con- 
stant depth (Horikawa & Wiegel 1959, Galvin 1968). For the variable depth 
Byrne (1969) recently reported some field evidence of secondary crests, when 
periodic waves of the cnoidal class pass over a submerged sand bar. All these 
cases and the results of $54 and 5 share a common feature, i.e. prior to its dis- 
integration a wave crest is steeper at  the front and flatter at  the back. As the 
stepped bore may be regarded as a limiting configuration of this kind (with a, 
horizontal back), Peregrine’s (1966) physical interpretation of the development 
of an undular bore from a stepped bore should be pertinent to all cases mentioned 
above. 

The authors are grateful for financial sponsorship by the U.S. Office of Naval 
Research under contract Nonr-1841 (59). 

Appendix. Computational aspects 
The small parameter, E = ho/L, pertains to tthe fluid motion, and involves the 

choice of a horizontal length scale. If we adopt the distance between the two 
points of a solitary wave where q/qo = 0.001 to be the ‘wavelength ’ L, the classical 
formula then gives 

For 0.1 < vo/ho < 0.4 we have & < E < A, and E is seen to be of the same order 
of magnitude as the slopes, a, studied herein. We have therefore chosen E = a. 

In the computations initial data are prescribed for t = 0 corresponding to 
the classical formulas for a solitary wave. Characteristic grids are arranged in 
the x, t plane so that At = constant; as shown by (2.8) this requires a variable Ax 
on the slope. Note that Ax = 4(3h/s)  At when h is constant. Central differences 
are used to replace derivatives along the characteristics. The variable co- 
efficients are replaced by the mean of the values at two neighbouring grid points 
along the pertinent characteristic. The equations are solved iteratively, with 
two iterations always sufficient. 

Numerical accuracy is checked for three aspects: (i) Total mass conservation 
(at all time within 1 yo). (ii) Stability with the criterion that on constant depth 
a solitary wave propagates for lOOAt without significant change in shape. Table 3 
shows the dependence of maximum usable stepsize upon the wave amplitude, 

Llho = 10J(ho/?lo). (A 1) 
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the ratio of computed wave speed, cc, and the theoretical ct = J(1 + ro/h,) and 
the nature of instability. Accordingly, computations are carried out only as 
long as the local amplitude to depth ratio is less than 0-4. It may be remarked that 
during the time 100At the wave travels a distance slightly larger than the charac- 
teristic length as defined by equation (A 1) .  (iii) The grid size in the region h = h, 
is Ax = 0.15h, (Ax = J 3 A t )  in all cases presented and sample checks for con- 
vergence were made by changing it to Ax = 0.1 h,. 

1.03 qo decreases 

1.06 

0.1 0-6 
0.2 0.5 
0.3 0.4 
0.4 0.25 
0.5 Too small - T,, increases 

TABLE 3. Stability restriction on grid size for various amplitude to depth ratios 

In deriving the basic approximate equations, existence of higher derivative 
h and h"' are required. This cannot in principle be achieved by the broken line 
geometry shown in figure 2. However, using a sinusoidal transition with the same 
average slope as that of the plane slope gives only insignificant changes in the 
transmitted wave, whereas the reflected wave is basically different and depends 
strongly on the local value of the slope, as may be inferred from Peregrine (1967). 
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